Abstract:
The distribution of
\begin{gather*}
S_n=X_1+\dots+X_n
\\
(\mathbf P\{X_j=1\}=p_j,\quad\mathbf P\{X_j=0\}=1-p_j)
\end{gather*}
is investigated. Some results are obtained concerning the rate of its convergence to a Poisson law and to some modifications of the Poisson law.
Citation:
S. Ya. Šorgin, “Approximation of a generalized binomial distribution”, Teor. Veroyatnost. i Primenen., 22:4 (1977), 867–871; Theory Probab. Appl., 22:4 (1978), 846–850
\Bibitem{Sho77}
\by S.~Ya.~{\v S}orgin
\paper Approximation of a~generalized binomial distribution
\jour Teor. Veroyatnost. i Primenen.
\yr 1977
\vol 22
\issue 4
\pages 867--871
\mathnet{http://mi.mathnet.ru/tvp3637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=458544}
\zmath{https://zbmath.org/?q=an:0392.60021}
\transl
\jour Theory Probab. Appl.
\yr 1978
\vol 22
\issue 4
\pages 846--850
\crossref{https://doi.org/10.1137/1122099}
Linking options:
https://www.mathnet.ru/eng/tvp3637
https://www.mathnet.ru/eng/tvp/v22/i4/p867
This publication is cited in the following 36 articles:
S. Y. Novak, “On Poisson Approximation”, J Theor Probab, 2024
José A. Adell, “Explicit upper bounds for the Stirling numbers of the first kind”, Journal of Combinatorial Theory, Series A, 192 (2022), 105669
Cekanavicius V. Vellaisamy P., “Compound Poisson Approximations in l(P)-Norm For Sums of Weakly Dependent Vectors”, J. Theor. Probab., 34:4 (2021), 2241–2264
Dumitru Popa, “The Korovkin Parabola Envelopes Method and Voronovskaja-Type Results”, Mediterr. J. Math., 18:4 (2021)
Emanuele Dolera, Stefano Favaro, “A Berry–Esseen theorem for Pitman's $\alpha $-diversity”, Ann. Appl. Probab., 30:2 (2020)
S. Y. Novak, “Poisson approximation”, Probab. Surveys, 16:none (2019)
S. Y. Novak, “On the accuracy of Poisson approximation”, Extremes, 22:4 (2019), 729
I. G. Shevtsova, “Convergence rate estimates in the global CLT for compound mixed Poisson distributions”, Theory Probab. Appl., 63:1 (2018), 72–93
Ron Goldman, Xiao-Wei Xu, Xiao-Ming Zeng, “Applications of the Shorgin Identity to Bernstein Type Operators”, Results Math, 73:1 (2018)
Kruopis J. Cekanavicius V., “Compound Poisson Approximations for Symmetric Vectors”, J. Multivar. Anal., 123 (2014), 30–42
C&H/CRC Monographs on Statistics & Applied Probability, 20114852, Extreme Value Methods with Applications to Finance, 2011, 351
Zacharovas V., Hwang H.-K., “A Charlier–Parseval Approach to Poisson Approximation and its Applications”, Lithuanian Mathematical Journal, 50:1 (2010), 88–119
Theory Probab. Appl., 55:2 (2011), 198–224
V. Čekanavičius, B. Roos, “An expansion in the exponent for compound binomial approximations”, Lith Math J, 46:1 (2006), 54
D. N. Karymov, “On the accuracy of approximation in the Poisson limit theorem”, Discrete Math. Appl., 14:3 (2004), 317–327
Roos B., “Improvements in the Poisson approximation of mixed Poisson distributions”, Journal of Statistical Planning and Inference, 113:2 (2003), 467–483
Roos B., “Sharp constants in the Poisson approximation”, Statistics & Probability Letters, 52:2 (2001), 155–168
P. Harremoes, “Binomial and Poisson distributions as maximum entropy distributions”, IEEE Trans. Inform. Theory, 47:5 (2001), 2039
B. Roos, “Multinomial and Krawtchouk Approximations to the Generalized Multinomial Distribution”, Theory Probab. Appl., 46:1 (2002), 103–117
A.D. Barbour, Handbook of Statistics, 19, Stochastic Processes: Theory and Methods, 2001, 79